Accueil > Newsletter > Productions scientifiques > Publications Scientifiques de la semaine

(2016) Current Opinion in Colloid and Interface Science, 25, pp. 120-128.

Nanoemulsification in the vicinity of phase inversion : Disruption of bicontinuous structures in oil/surfactant/water systems

Roger, K.


- Oil/surfactant/water systems may undergo phase inversion upon tuning the preferred curvature of the surfactant layer. The longstanding relationship between nanoemulsification and phase inversion is discussed in view of recent mechanistic advances. The name “phase inversion emulsification” is shown to result from a historical confusion. Both nanoemulsification and phase inversion are controlled by the properties of the surfactant layer but phase inversion is shown to be unnecessary to obtain nanoemulsions. Nanoemulsions can be obtained in the vicinity of phase inversion through the disruption of equilibrium bicontinuous networks. A first pathway involves a change of the interaction between the surfactant layer and water at a precise location in the parameter space and under shear.
- A non-equilibrium micellar solubilization of oil, named superswelling, leads to an ideal nanoemulsion after quenching. All the surfactant is used to cover the interfaces and none is wasted in the continuous phase. The sub-PIT (Phase Inversion Temperature) method falls within this category.
- A second pathway involves the addition of water to a water-deprived system. Oil phase separates within a bicontinuous sponge phase matrix at a precise location in the parameter space and leads to a nanoemulsion upon further addition of water. Larger droplets are obtained and some surfactant is wasted, which demonstrates that this pathway is different and less efficient, although easier to implement. It is shown that the identification of the two access states in the nanoemulsification pathways, the superswollen microemulsion and the separating sponge phase, is essential when using surfactant blends. On the contrary, phase inversion is not only irrelevant but also damaging to the success of the emulsification process.